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Abstract
We present full phase diagrams (including solid phases) of spherical charged colloids, using
Monte Carlo sampling and thermodynamic integration of the Helmholtz free energy. Colloids
and their co- and counterions are described by the primitive model for ionic systems that
consists of hard-spheres with central point charges, while the solvent is taken into account
solely through its dielectric constant. Two systems are considered: (i) a size-asymmetric system
of oppositely charged spheres with size ratios q = 0.3 and 0.5 and (ii) a charge- and
size-asymmetric system with colloid charge Q = 10 and counterions of charge −1 in the
presence of monovalent added salt. In system (i), for both size ratios, the stable solid phase is
equivalent to the NaCl crystal where the oppositely charged spheres take the lattice positions of
Na and Cl ions. In system (ii), the phase diagram consists of gas–liquid and fluid–solid
coexistence regions. We show that added salt stabilizes the fluid phase and shrinks the
fluid–solid coexistence region, in agreement with experimental and theoretical results.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Charged colloidal suspensions consist of 10 nm–1 μm size
macroions carrying between 10 and 104 electron charges
that are suspended in a solvent (e.g. water) with co- and
counterions. Due to electrostatic attractions between the
colloids and the counterions, the counterions build a layer
around the colloid called the double layer. In nature,
colloids are found as globular proteins and micelles, but
can also be synthesized as spheres and many other shapes.
Colloids are of fundamental interest due to their importance
in systems ranging from food and paper products to building
blocks of novel photonic devices. One fascinating feature
of charged colloids is the ability of same-charge objects
to (effectively) attract each other. This phenomenon is
called ‘like-charge attraction’ and its origin lies in the
counterion–counterion correlations between the electric double
layers [1–6]. Like-charge attraction is only present when
the Coulomb interactions are strong in comparison to

1 Present address: National Renewable Energy Laboratory, Golden,
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2 Author to whom any correspondence should be addressed.

thermal fluctuations. This is typically not the case for
colloids suspended in water with monovalent salt, for which
interactions are weak because of the high dielectric constant
of the medium. The condition of strong Coulomb interactions
can be realized, however, in lower dielectric constant solvents
or with multiply charged counterions. The systems of
interest for the present study are strongly interacting and do
not correspond to typical experimental systems in aqueous
solutions. Examples of like-charge attraction include the
reduced swelling of lyotropic liquid lamellar phases when
monovalent ions are substituted by divalent ions [7, 8]. The
very simplest computational model that reproduces like-charge
attraction is the so-called primitive model in which the colloids
and ions are represented as hard-spheres with charges at their
centers and the solvent is taken into account as a continuum
dielectric medium. Previous studies of the primitive model
have showed that the system has a stable gas–liquid critical
point and have determined its location for colloid charges
Q = 1–10 times the counterion charge [9–14]. In earlier
work [15], we have determined the full phase diagrams for
salt-free charged colloids with point counterions. Results for
colloid charge up to Q = 50 were obtained by thermodynamic
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integration and an approximate technique was developed for
colloid charges up to Q = 2000.

In real charged colloidal suspensions, added salt
consisting of co- and counterions is always present to some
degree. There have been numerous theoretical [16–21] and
experimental [22–24] studies of the effects of added salt
on the phase behavior of charged colloids. Salt effects on
phase diagrams have been studied by simulation primarily
using effective, salt-mediated potentials for the colloid–colloid
interactions [25–27]. In an earlier paper [13], the location of
the gas–liquid critical point was determined as a function of the
amount of added salt for an explicit-ion model colloid of charge
Q = 2, 3, and 10. In this earlier work, the critical temperature
and density were determined at a fixed chemical potential of
added salt. While grand-canonical simulations can accurately
locate the critical point, they cannot easily be used to determine
phase coexistence between solid phases. In the present study,
we address this issue by calculating the phase diagram using
Helmholtz free energy methods, which accurately determine
both gas–liquid and fluid–solid coexistence regions but are
less accurate in determining vapor–liquid critical points. As
an example, we calculate the phase diagram of a charge- and
size-asymmetric primitive model colloidal system with charge
Q = 10, at fixed temperature and varying chemical potential of
added salt. For simplicity, we refer to this system as ‘charge-
asymmetric’ in the rest of this paper. As another example of
the use of this approach, we obtain the phase diagram of size-
asymmetric charged spheres with opposite charges of equal
magnitude and size ratios q = 0.3 and 0.5. This system is
relevant for suspensions of oppositely charged nanoparticles or
colloids [28–31].

The rest of this paper is organized as follows. In section 2,
we present details of the thermodynamic integration approach
used for calculations of the Helmholtz free energies. Section 3
presents our results for the solid–liquid and vapor–liquid
transitions for the two systems studied. Section 4 concludes
with a discussion of our findings and implications for future
studies of full phase diagrams of charged colloids.

2. Methods

We performed MC simulations in cubic simulation boxes
within periodic boundary conditions. Particles interact via the
Coulomb potential plus hard-core repulsion given by

u(ri j )

kBT
=
⎧
⎨

⎩

qi q jσ

T ∗ri j
if ri j � 1

2 (σi + σ j )

∞ if ri j < 1
2 (σi + σ j ),

(1)

where qi and q j are the charges of particles i and j , ri j is
the distance between the particles, T ∗ = σ/λB is a reduced
temperature, σ is the diameter of the colloids, λB = e2/εkBT is
the Bjerrum length of the solvent, kB the Boltzmann constant,
and T the absolute temperature. The long-ranged Coulomb
interactions were calculated using the Ewald summation
method [32] with 514 reciprocal space vectors and conducting
boundary conditions. Density was measured using the packing
fraction η, defined as the fraction of volume V taken up by the

colloids and the ions. For the charge-asymmetric system the
packing fraction is

η = π

6

Ncolσ
3 + Nionσ

3
ion

V
, (2)

where Ncol and Nion are the number of colloids and ions. For
the size-asymmetric system, the packing fraction becomes

η = π

6
(1 + q3)σ 3 Ncol

V
, (3)

where Ncol is the number of large and small spheres and q is
the size ratio. The MC displacement moves for colloids were
accelerated using cluster moves [33, 34].

For both the size- and charge-asymmetric systems, the
Helmholtz free energy F(Ncol, Nsmall, V , T ) was obtained
from thermodynamic integration. Nsmall is the number of
small particles: Nsmall = QNcol + 2〈Nsalt〉 in the case
of charge-asymmetric case and Nsmall = Ncol in the size-
asymmetric case. For the charge-asymmetric system, the
average number of salt pairs 〈Nsalt〉 is calculated using semi-
grand-canonical simulations where the salt chemical potential
μsalt, the number of colloids, volume, and the temperature
are fixed. The resulting phase diagram is presented in the
chemical potential of salt μsalt, packing fraction η plane at
constant temperature T ∗. In the thermodynamic integration
method, the free energy is calculated as the difference between
a reference system (whose free energy is known) and the actual
system of interest. The total Helmholtz free energy is then
given as the sum of the reference system free energy and the
free energy difference. For the fluid phase, the thermodynamic
integration method is also known as Kirkwood’s coupling
parameter method [32, 35]. In this method, an auxiliary
potential energy function is introduced,

Uλ(rN ) = UHS(rN ) + λU(rN ), (4)

where λ ∈ [0, 1] is a coupling parameter and N is the total
number of particles in the system: N = (Q + 1)Ncol + 2〈Nsalt〉
in the charge-asymmetric case and N = 2Ncol in the size-
asymmetric case. In equation (4), at λ = 1, we recover the
system of interest, while at λ = 0, the system reduces to the
reference state. The Helmholtz free energy is given by

F(N, V , T ) = FHS(Ncol, Nsmall, V , T ) +
∫ 1

0

〈
U(rN )

〉

λ
dλ,

(5)
where FHS is the free energy of the reference state. For the fluid
phase, this is a mixture of Ncol large hard-spheres and Nsmall

small hard-spheres and can be computed using the analytical
formula from [36]. The integral in equation (5) is evaluated
numerically using the Gauss–Legendre quadrature [37] where

∫ 1

0

〈
U(rN )

〉

λ
dλ ≈ 1

2

m∑

i=1

wi
〈
U(rN )

〉

λi
. (6)

In equation (6), the ensemble averages are calculated at
coupling parameter values λi = 1

2 (xi + 1), where xi is the
i th root of the Legendre polynomial Pm(x) and the weights
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Figure 1. A snapshot of the fcc crystal structure in the
charge-asymmetric system at μsalt = −8kBT and η = 0.5. In this
snapshot Ncol = 108 and Nsalt = 146. The large (red) spheres
represent the colloids with charge Q = 10 and the small dark (blue)
and light (yellow) spheres represent the co- and counterions with
charges +1 and −1, respectively.

are given by wi = 2
1−x2

i
[P ′

m(xi)]2. For the solid phase of the

charge-asymmetric system, the reference state in equation (5)
is a face-centered-cubic (fcc) solid of large hard-spheres
(colloids) mixed with a fluid of small hard-spheres (the co-
and counterions), see figure 1. Figure 1 shows a snapshot of
a fcc crystal at μsalt = −8kBT and η = 0.5, where the large
(red) spheres are the colloids and the small dark (blue) and light
(yellow) spheres are the co- and counterions, respectively.

The free energy of the reference state is calculated from

FHS(Ncol, Nion, V , T ) = FHS(Ncol, 0, V , T )

+
∫ Nion

0
〈μion(Ncol, n, V , T )〉 dn, (7)

where FHS(Ncol, 0, V , T ) is the free energy of a hard-sphere
fcc crystal [38] and 〈μion(Ncol, n, V , T )〉 is the ensemble
average of the chemical potential of small hard-spheres.
In practice, to evaluate the integral in equation (7), we
calculate the chemical potential 〈μion(Ncol, n, V , T )〉 between
every 25 (or 50) ion numbers n using the Widom insertion
method [32, 39], perform a Padé approximation on the data
in order to obtain a smooth function, and finally numerically
integrate the Padé approximation.

The crystal structure in the size-asymmetric systems is
equivalent to the NaCl crystal where the positive and negative
spheres take the lattice positions of the Na and Cl ions. Figure 2
shows a snapshot of the NaCl crystal structure for q = 0.5.
The thermodynamic integration method given in equation (5)
works only for crystal structures with a stable hard-sphere
reference state (at λ = 0). In practice then, the method
is limited to fcc and hexagonal-close-packed (hcp) crystals
at packing fractions above the hard-sphere melting packing
fraction η ≈ 0.548 [40]. In particular, the method cannot be
used to calculate the free energy of the NaCl crystal since the

Figure 2. A snapshot of the NaCl crystal structure in the
size-asymmetric system with opposite charges of equal magnitude
and size ratio q = 0.5. In this snapshot Ncol = Nsmall = 32.

simple cubic solid is unstable for hard-spheres. Fortunately,
in all these other cases, the Helmholtz free energy can still be
calculated by simply changing the reference state from hard-
spheres to an Einstein crystal where the particles are tied to
their ideal lattice positions by harmonic springs. This method
was first presented by Frenkel and Ladd for calculating the
free energy of hard-spheres [41] and has since been refined
and applied to many other systems [32, 42]. For the charge-
asymmetric system, one starts from an Einstein crystal where
the particles are tied to their ideal lattice positions by harmonic
springs. Step by step, the springs are removed and one
recovers the original interactions. The auxiliary potential
energy function that includes the harmonic springs is given by

Uλ(rN ) = UHS(rN ) + (1 − λ)U(rN )

+ kBT λα

Ncol∑

i=1

(ri − r0,i)
2/σ 2. (8)

In equation (8), the potential energy term U(rN ) vanishes at
λ = 1 and the system interacts via a hard-core potential
UHS(rN ) plus harmonic springs. The Helmholtz free energy
is now obtained from

F(N, V , T ) = FEin(Ncol, Nion, V , T, α)

−
∫ 1

0
dλ

〈

kBTα

Ncol∑

i=1

(ri − r0,i)
2/σ 2 − U(rN )

〉CM

λ

, (9)

where the free energy of the Einstein crystal is given by

FEin(Ncol, Nion, V , T, α) = 3(Ncol − 1)

2
kBT ln

(α

π

)

+ kBT ln

(
σ 3

V N1/2
col

)

− 6 ln [1 − P(α, η)]

+
∫ Nion

0
〈μion(Ncol, n, V , T )〉 dn, (10)
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where

P(α, η) = erf
[√

α/2(σ + a)
]+ [√

α/2(σ − a)
]

2

− exp
[−α(σ − a)2/2

]− exp
[−α(σ + a)2/2

]

a
√

2πα
, (11)

is the probability that two nearest neighbors overlap in a fcc
crystal. In equation (10), the first term is the free energy
of the Einstein crystal with a fixed center of mass, and the
second term is a correction term for the fixed center of mass.
The third term is a correction term that takes into account
configurations where nearest neighbors overlap. The fourth
term in equation (10) is the free energy change due to adding
the Nion small hard-spheres (the microions) into an Einstein
crystal of Ncol large hard-spheres (the colloids) with coupling
parameter α. This term is calculated in the similar way as in
equation (7). In equation (9), the ensemble average 〈· · ·〉CM

λ

is calculated with a Boltzmann factor exp(−Uλ/kBT ) for a
crystal with a fixed center of mass. The integral in equation (9)
is evaluated numerically using the Gauss–Legendre method
given by equation (6).

In the size-asymmetric case the auxiliary potential energy
function is given by

Uλ(rN ) = UHS(rN ) + U(rN ) + kBT λα

N∑

i=1

(ri − r0,i )
2/σ 2.

(12)
Note that the difference between equations (8) and (12) is that
equation (12) retains the Coulomb interactions at λ = 0. In
equation (12), the reference state at λ = 1 is a non-interacting
Einstein crystal where the spring constants are chosen so large
that the neighboring spheres do not overlap. Therefore the
overlap probability P(α, η) = 0 and the system behaves as
a harmonic crystal with mean-square displacement given by

〈r 2〉λ=1 = 〈r 2〉Einst = 3(N − 1)

2Nα
. (13)

At λ = 1, the particles are vibrating harmonically about
their minimum energy lattice positions determined by the
Coulombic potential energy. The reference state free energy
is then given by the free energy of an Einstein crystal plus the
Coulomb potential energy of an ideal NaCl crystal, i.e., the
Madelung energy. The Helmholtz free energy is now obtained
from

F(N, V , T ) = U(rN
0 ) + FEin(N, V , T, α)

−
∫ 1

0
dλ

〈

kBTα

N∑

i=1

(ri − r0,i)
2/σ 2

〉CM

λ

, (14)

where U(rN
0 ) is the Madelung energy and

FEin(N, V , T, α) = 3(N − 1)

2
kBT ln

(α

π

)

+ kBT ln

(
σ 3

V N1/2

)

. (15)

In order to make the numerical integration in equation (14)
more accurate, we re-parameterize the integration variable to
obtain a more smoothly varying integrand. To this end, we

employ the scheme introduced in [32, 41], where the integrand
is re-written as

∫ ln(α+c)

ln c
(c + αλ)

〈
N∑

i=1

(ri − r0,i )
2/σ 2

〉CM

λ

d[ln(c + αλ)],
(16)

where

c = 1
〈∑N

i=1(ri − r0,i)2/σ 2
〉CM

0

. (17)

In using this re-parameterization, one first calculates the mean-
square displacement at λ = 0 to obtain an estimate for c.
One can easily check that the integrand in equation (16) varies
between 1.0 at λ = 0 and approximately 1.5 at λ = 1 (because
N 
 1 and α 
 c). These analytical limits serve as an easy
check for making sure the method is working correctly. In
particular, if the integrand does not converge to 1.0 at λ = 0,
it is likely that the solid has melted or reconfigured to another
crystal structure.

For the charge-asymmetric case, we also tried to calculate
free energies by starting from a salt-free system and integrating
the salt equation of state (Nsalt , μsalt). In this case, the
equation of state is obtained from canonical MC simulation
using the Widom insertion method. However, this approach
failed because the equation of state data was too noisy. The
likely reason for the noisiness is the high electrostatic coupling
in the system: counterions are preferentially placed around
the colloids but such optimal placement happens only rarely
in the uniform random insertions used in the Widom method.
This makes gathering good statistics difficult. Note that
the same problem is not present in the uncharged system
and therefore the evaluation of the integrals in equations (7)
and (10) is feasible. Additionally, in this case, the hard-sphere
simulations are much faster since there is no need for Ewald
summation.

3. Results

The charge-asymmetric simulations were performed with
Ncol = 108 colloids. A typical simulation run consisted of
10 000 equilibration and 40 000 production MC steps (trials
to displace each particle once). The CPU time of a single
MC run varied from 3 h at low salt concentration to 6 h at
high salt concentration on 2.6 GHz Intel processors. Since
we used 10 integration points for evaluating the integrals in
equations (5) and (9), this adds up to 30–60 CPU hours for each
Helmholtz free energy point and 438 days of CPU time for the
entire phase diagram. Therefore, although the majority of the
computational effort can be run in parallel, constructing the
phase diagram takes up a lot of computational resources. This
is why we calculated the charge-asymmetric phase diagram
only for a single temperature. Most of the size-asymmetric
simulations were performed for system size N = 64, but we
also used simulations with N = 108 and 216 to check for
finite size effects. Again, the simulations consisted of 10 000
equilibration and 40 000 production steps. The effect of the
system size was determined to be smaller than other sources of
error.
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Figure 3. The integrand in equation (5) as a function of the
integration variable λ for a fluid phase at η = 0.17 and T ∗ = 0.044.

Figure 4. The integrand in equation (16) of the size-asymmetric
system with q = 0.5 as a function of the integration variable
ln(c + αλ) for a (NaCl) solid phase at η = 0.51 and T ∗ = 0.044.

Figure 3 shows the integrand in equation (5) for the size-
asymmetric system with opposite charges of equal magnitude
and q = 0.5 as a function of the integration variable λ for
a fluid phase at η = 0.17 and T ∗ = 0.044. The integrand
is evaluated at 10 integration points that are distributed using
the Gauss–Legendre scheme. We tested the accuracy of the
numerical integration by increasing the number of integration
points to 20 and the result was the same within the error
estimate. Figure 4 shows the integrand in equation (16) of
the size-asymmetric system with q = 0.5 as a function of
the integration variable ln(c + αλ) for a (NaCl) solid phase
at η = 0.51 and T ∗ = 0.044. We see from figure 4 that the
integrand varies between 1.0 at λ = 0 and approximately 1.5
at λ = 1, as was discussed in section 2. Figure 5 shows the
Helmholtz free energy per volume as a function of packing
fraction for the size-asymmetric system with q = 0.5 and
T ∗ = 0.06. We have subtracted a linear function to highlight
the phase coexistence between a gas phase at η = 0.006
and a liquid phase at η = 0.14, which can be seen using a
common tangent construction. Figure 6 plots the Helmholtz
free energy of the same system at T ∗ = 0.044 and shows a
phase coexistence between a fluid at η = 0.38 and a solid

Figure 5. Helmholtz free energy per volume F/V as a function of
packing fraction η for the size-asymmetric system with q = 0.5 and
T ∗ = 0.06. The data shows a phase coexistence between a gas phase
at η = 0.006 and a liquid phase at η = 0.14.

Figure 6. Helmholtz free energy per volume F/V as a function of
packing fraction η for the size-asymmetric system with q = 0.5 and
T ∗ = 0.044. The data shows a phase coexistence between a fluid
phase at η = 0.38 and a solid phase at η = 0.51.

phase at η = 0.51. These plots were used to construct the
phase diagrams shown in figures 7 and 8 for size ratios q = 0.3
and q = 0.5, respectively, in the packing fraction η, reduced
temperature T ∗ representation. The shaded areas denote phase
coexistence regions between gas and liquid, and fluid and NaCl
solid. The tie lines in the coexistence regions are horizontal
and the symbols mark the location where the calculations
were performed. The stars denote the critical points and the
solid (red) lines denote the gas–liquid phase coexistence lines
determined using grand-canonical MC simulations. The details
of the grand-canonical simulations can be found in [12–14, 43].
As can be seen, the grand-canonical results agree well with
the Helmholtz free energy results, giving us confidence in the
methods presented in this paper. The two phase diagrams
for the size-asymmetric systems share common features with
the corresponding phase diagram for the restricted primitive
model for electrolytes (RPM) [30, 44], which corresponds to
q = 1. Because of the size asymmetry, however, the fluid
crystallizes into a solid with the NaCl structure, rather than
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Figure 7. Phase diagram of primitive model charged spheres with
opposite charges of equal magnitude and size ratio q = 0.3 in the
packing fraction η, reduced temperature T ∗ representation. The
shaded regions marks phase coexistence where tie lines are
horizontal. Estimated uncertainties are comparable to symbol size.

Figure 8. Phase diagram of primitive model charged spheres with
opposite charges of equal magnitude and size ratio q = 0.5 in the
packing fraction η, reduced temperature T ∗ representation. The
shaded regions marks phase coexistence where tie lines are
horizontal. Estimated uncertainties are comparable to symbol size.

the CsCl structure into which the RPM liquid crystallizes at
temperatures comparable to the gas–liquid critical temperature.

Figure 9 shows the phase diagram of the charge-
asymmetric system with colloids of charge Q = 10 and
monovalent added salt (i.e., co- and counterions with charges
+1 and −1, respectively) in the packing fraction η, salt
chemical potential μsalt representation at reduced temperature
T ∗ = 0.56. In figure 9, the lowest salt chemical potential
μsalt = −20kBT is equivalent to the case of no added
salt (i.e. μsalt = −∞) and the highest salt concentration
is at μsalt = −8kBT . Figure 10 shows the same phase
diagram in the packing fraction η, salt concentration Nsalt/L3

representation. In figure 10, the dashed lines denote tie lines
between coexisting phases and the highest salt concentration
points shown correspond to salt chemical potential μsalt =
−9kBT . The size of the microions was set to σion = 0.1σ ,
which is small enough so that the salt-free (μsalt = −20kBT )

Figure 9. Phase diagram of primitive model charged colloids with
charge Q = 10 and added monovalent salt in the packing fraction η,
salt chemical potential μsalt representation at reduced temperature
T ∗ = 0.56. The shaded regions marks phase coexistence where tie
lines are horizontal. Estimated uncertainties are comparable to
symbol size.

Figure 10. Phase diagram of primitive model charged colloids with
charge Q = 10 and added monovalent salt in the packing fraction η,
salt concentration Nsalt/L3 representation at reduced temperature
T ∗ = 0.56. The shaded regions marks phase coexistence and the
dashed lines denote tie lines between coexisting phases. Estimated
uncertainties are comparable to symbol size.

results agree with point-like ion results [15] but at the same
time large enough so that the salt component itself does not
undergo gas–liquid phase separation. The shaded areas denote
phase coexistence regions between gas and liquid, and fluid
and fcc solid. The tie lines in the coexistence regions are
horizontal. As can be seen from figure 9, the phase diagram
has the familiar gas–liquid and fluid–solid coexistence regions.
Gas–liquid phase coexistence terminates at a critical point
around μsalt ≈ −11kBT . Note that the methods employed here
do not allow for an accurate determination of the critical point.
Figure 9 shows that the fluid–solid coexistence region becomes
narrower with increasing salt, as seen experimentally [22] and
in theoretical studies of Yakawa systems [17, 19]. The phase
diagram is again qualitatively similar to that for the restricted
primitive model for electrolytes (RPM) [30, 44], with the

6
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temperature for the RPM being analogous to salt concentration
for the system with added salt. The solid–fluid transition
cannot be determined at higher salt chemical potentials in the
present study because of computational time limitations.

The other stable crystal structure for charged colloids
is the body-centered-cubic (bcc) solid. From our earlier
work [15], we know that bcc is not stable at zero added
salt (where μsalt = −20kBT ). Since adding salt makes
the effective colloid–colloid interactions less attractive and
ultimately repulsive, it is possible that the bcc phase could
be stable at high salt chemical potentials around μsalt =
−8kBT , however, in the current paper we have not studied this
possibility further.

4. Conclusions

We have applied Helmholtz free energy thermodynamic
integration methods to obtain the phase diagram of charged
colloids. The calculations were performed within the primitive
model using Monte Carlo simulations. Two systems were
considered: (i) a size-asymmetric system that consists of
equal amounts of oppositely charged spheres with size ratios
q = 0.3 and 0.5, and (ii) a charge- and size-asymmetric
system with colloid charge Q = 10 in the presence of
monovalent added salt (i.e., co- and counterions with charges
+1 and −1, respectively). For the size-asymmetric system,
we calculated the phase diagram in the packing fraction η,
reduced temperature T ∗ plane. The phase diagram consists
of gas, liquid, and solid phases, and their coexistence regions.
The stable solid phase is analogous to the NaCl crystal where
the oppositely charged spheres take the lattice positions of Na
and Cl ions. In the case of charge-asymmetric colloids, we
have calculated the full phase diagram of charged colloids with
charge Q = 10 times the counterion charge in the presence
of monovalent added salt. The phase diagram is presented
for fixed reduced temperature T ∗ in the packing fraction η,
chemical potential of added salt μsalt plane, and consists of gas,
liquid, and solid phases, and phase coexistence regions. The
stable solid phase is an fcc crystal of large spheres (colloids).
With increasing added salt, the gas–liquid coexistence shrinks
and terminates in a critical point, stabilizing the fluid phase.
The stabilization of the fluid phase with added salt has been
observed experimentally in [22]. The fluid–solid coexistence
region also shrinks with increasing added salt.

The computational methods used in this work can be
applied in principle to any charged colloidal system, with
or without added salt. However, sampling difficulties are
expected for very high charge asymmetries in the presence of
salt. Also, an exhaustive investigation of alternative crystal
structures needs to be performed to determine the stable solid
phase in the size-asymmetric system.
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